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ON THE EQUATION ZpjN p + N 1 
PSEUDOPERFECT NUMBERS, 

AND PERFECTLY WEIGHTED GRAPHS 

WILLIAM BUTSKE, LYNDA M. JAJE, AND DANIEL R. MAYERNIK 

ABSTRACT. We present all solutions to the equation EpN + = 1 with at 
most eight primes, improve the bound on the nonsolvability of the Erd6s-Moser 
equation EL1 jnl = m , and discuss the computational search techniques 
used to generate examples of perfectly weighted graphs. 

Recent study of the unit fraction equation 
k k 

(1) 1 -=1 
i=1 i= 

n1 <n2 < ... < nk, has sparked renewed interest in the relation 

(2) 
1 1 = I 

pjN 

where the sum is taken over all distinct prime divisors of N. One purpose of this 
paper is to present all solutions of equation (2) with k < 8 primes. There is exactly 
one solution for each k in this range, verifying conjectures of Ke and Sun [9], and 
Cao, Liu and Zhang [7]. In the second section, properties of solutions will be applied 
to the Erd6s-Moser equation 

m-1 

(3) Z j= m. 

We improve the bound on m to 109.3x 106 for the conjecture that no nontrivial solu- 
tion to (3) exists. Finally, we apply search techniques developed in connection with 
equations (1) and (2) to the topic of perfectly weighted graphs (see [4]). Specifically, 
for n > 3 we have found all perfectible graphs of the following form. 

k 
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to the original manuscript. 

1. PRIMARY PSEUDOPERFECT NUMBERS 

Recall that a positive integer is called perfect if it is the sum of all its proper 
divisors, and pseudoperfect if it is the sum of some of its proper divisors ([8, p. 46]). 
A positive integer N= IlkJ1 ni with factors ni satisfying equation (1) is clearly 
pseudoperfect since 

k N 
N=ZE-+1. 

i=1 ni 

All solutions n1, ... , nk to equation (1) are known for k < 7 ([5], [3]). For k = 8, the 
list of known solutions continues to grow, with 89 solutions announced by Brenton 
and Bruner in 1994 ([2]). At present 112 solutions are known to the authors. 

In the case where the divisors ni are precisely the distinct prime divisors of N, 
we obtain equation (2). Conversely, since equation (2) implies that N is square- 
free, a solution to (2) is a special case of (1). We will call an integer N =f.k 
satisfying (2) a primary pseudoperfect number. Through search methods described 
in Section 4, all primary pseudoperfect numbers with k < 8 prime factors have been 
found. 

Theorem 1. Table 1 comprises the complete list of solutions to the equation 

1+ 1 =1 
pNp 

with eight or fewer primes. 

TABLE 1. Primary pseudoperfect numbers with k < 8 prime factors 

k N Factors 
1 2 2 
2 6 2,3 
3 42 2,3,7 
4 1806 2,3,7,43 
5 47058 2,3,11,23,31 
6 2214502422 2,3,11,23,31,47059 
7 52495396602 2,3,11,17,101,149,3109 
8 8490421583559688410706771261086 2,3,11,23,31,47059,2217342227,1729101023519 

No solutions to equation (2) are known of length greater than 8. We do not know 
whether there are infinitely many solutions. As in the case of perfect numbers, no 
odd primary pseudoperfect number is known. 

If we allow prime powers among the divisors, we have two additional solutions. 

k N Factors 
7 144508961850 2,3,11,25,29,1097,2753 
8 20882840055109264384350 2,3,11,25,29,1097,2753,144508961851 
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These, together with the 8 solutions of Table 1, constitute the list of known 
solutions in primes Pi to the equation 

k 1 1 
(4) S ei + k 

There is also independent interest in the companion equation 

(5) - - 1. 
N 

pjN 

Reference [1] discusses the history of this equation and presents the eleven solutions 
that were known as of 1996. Recently, two new solutions have been found: 

1910667181420507984555759916338506 
= 2 * 3 * 7 * 43 * 1831 * 138683 * 2861051 * 1456230512169437 

by M. Hogan and C. Mangilin, and 
4200017949707747062038711509670656632404195753751630609228764416142557211- 
582098432545190323474818 

=2*3*11*23*31*47059*2217342227*1729101023519 
*8491659218261819498490029296021*58254480569119734123541298976556403 

by R. Girgensohn (both unpublished). 

2. THE ERD6S-MOSER EQUATION 

More than four decades ago Paul Erd6s conjectured that no solution exists to 
the equation 

ln + 2n + + (m-_ 1)n - mn 

except the trivial solution 11 +21 = 31. Although the conjecture remains unproven 
(see [8, p. 153-154]), in 1953 Leo Moser [11] verified that no solution exists for 
m < 10106 . This bound has recently been used by Pieter Moree [10] to obtain 
similar results for the equation Ljf1 amn. Moser's proof proceeds by using 
elementary number theoretic considerations to show that if (m, n) is a solution, 
then the following expressions involving the prime divisors of m - 1 and of 2m i 1 
must be integers: 

(ae) E -+ tl, 
pl(m-1) 

Z 1 2 
-+ t2' 

pl(2m-1)p 
n-1 

(^y) E - + 2 + =t3. 
p|(2m+l) 

p 2m+1 

Furthermore, if m is odd, then m = 3 mod 8 and 
1 1 

(5) -~~~~~~~+ =_ ~t4. (m+1) 
I (m+1) 2 

No solution to any of these is known for ti > 1. For tl,t4 1, equations (av) 
and (6) imply that m - 1 and m+1 are a pair of primary pseudoperfect integers. 
No nontrivial solution is known to either (3) or (-y). All of this comprises strong 
support for the conjecture that no solution to (3) exists. 
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Considering first the case m= ? mod 6, Moser notes that except for the primes 
2 and 3, no prime can divide any two of m ?1, 2m ? 1. Therefore, the prime divisors 
of the square-free integer M = (4m52m+1) 12 (m-1)(m + 1)(2m-1)(2m + 1) 
satisfy 

(6) 1 ~~~1 2 2 4 
(6) Ep+ rm- I m + 1 2m 1 + 2m + 1 

=tl +t2+t3+t4 - - - - >3-. 
2 3 6 

In the remaining cases m _ 3 mod 6 and m even, similar analysis applied to 
M' = 4 (m- 1)(m + 1)(2m - 1)(2m + 1) and to M" = (m - 1)(2m - 1)(2m + 1), 
respectively, lead to similar inequalities, which are greatly more restrictive than (6), 
since in these cases the small primes 3, respectively 2, do not appear in the sum. 
The bound m > 10106 then follows from estimates on the rate of growth of E 1 

p 
taken over all primes. 

In 1953 "computation" was the unwanted stepchild of "pure" mathematics, in 
part because adequate computational tools were lacking. Moser himself is (justly) 
proud of having achieved the startlingly immense bound 10106 by techniques of 
analytic number theory "without laborious computations" ([11, p. 84]). 

Times change: now we can actually calculate these large numbers that previously 
could only be roughly estimated. All calculations reported in this paper were done 
on a network of 20 Sun Sparc stations over the course of about 10 months. 

Theorem 2. Let (m, n) be a solution to the Erdos-Moser equation (3), with n > 1. 
Then m > 1.485 x 109321155. 

Proof. As above, the critical case is m ? ?1 mod 6. In this case put M 
4m 4-5m 

+1. We claim that M has at least 4990906 prime factors. For if not, 12 
then 

4990905 

pIM i=1 

where pi is the ith prime. But by direct computation 

4990905 
1 

4 900 3.1666666588101728584* < 31 - 10-9. 
Pi 6 

Since, by Moser's bound m > 10106 ,this is less than 3 1 1 2 2 4 
6 rn-i m+1 2m-1 2m+1' 

4990906 contradicting (6). Thus M > Hli=l pi. Again, direct computation gives 

4990906 

Z logpi = 8.5851010694053365252... * 107. 

Solving the resulting inequality 

3 > M > e8.5851010694053365252*107 

gives the required bound m > 1.485 * 109321155. The cases m 0 mod 3 and m 
even are similar. FE 
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Remark. While this bound appears to be the best available by the method pioneered 
by Moser, the authors hope that new insights will eventually make it possible to 
reach the more natural benchmark 101i7. 

3. PERFECTLY WEIGHTED GRAPHS 

The concept of a perfectly weighted graph was introduced by Brenton and 
Drucker in [4] in connection with the problem of classifying isolated singular points 
of algebraic surfaces by properties of the local fundamental group. 

Definitions. Let G be a tree (a connected graph with no circuits) on n vertices 
vi,... , vn, with an integer weight wi > 1 assigned to each vertex vi. Then the 
weighted graph G = G(wi,.... , wn) is called perfectly weighted if the corresponding 
matrix 

Wi 0 ... 0 

MG = 0 W2 0 
- [the adjacency matrix of G] 

0 .0 
0 ... 0 Wn_ 

is positive definite with determinant 1. An unweighted tree G is perfectible if there 
exist weights wi for its vertices such that the resulting weighted graph G(wi, . . . , wn) 
is perfectly weighted. 

An isolated singular point x of an m-dimensional complex analytic variety X 
is called homologically trivial if x admits a neighborhood U in X which is homeo- 
morphic to the cone on a homology (2m - 1)-sphere. That is, Hi(&U, Z) = 0 for 
0 < i < 2m - 1. 

The main theorem from [4] gives the following relation between perfectly 
weighted graphs and homologically trivial singularities in complex dimension 2. 

Lemma 3.1. Let X be a complex surface with a singularity at the point x E X 
and with no other singular points. Let X be the minimal nonsingular model of X 
and let p: X > X be the minimal resolution of singularities. Denote by C the 
exceptional curve p-1(x), and write C = Un=1 Ci with each Ci irreducible. Suppose 
that the resolution p is normal and that each component Ci is rational. Then x E X 
is homologically trivial if and only if the dual intersection graph of p is a perfectly 
weighted tree. 

Here the dual intersection graph (call it GP) is the graph on vertices vi,... Vn, 

where vi meets vj if and only if Ci meets Cj in X and with weight wi on vi equal to 
the negative of the Chern class of the normal bundle of the embedding of Ci in X. 
The essential element of the proof is the following presentation, due to Mumford 
[12], of the local fundamental group. Under the hypotheses of Lemma 3.1, if GP is 
a tree, then the first homotopy group of a tubular neighborhood T = p-1 (aU) of 
the exceptional curve C in X is given by generators xi,... , xn with relations 

n 

flx?Ci -j1 
j=1 

for all i, and xixj = xjxi if Ci meets Cj, where Ci Cj is the intersection number 
(the negative of the i,jth entry of GP). Since the intersection matrix [Ci . Cj] is 
always negative definite in the complex case, the corresponding first homology group 
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Hi(T,Z) =7ri(T)/(xyx-1y-1 = 1) is a finite group of order D = (-1)n det[Ci- 
Cj] = det[MGc]. Thus, if x E X is homologically trivial, then 7ri(T) is a perfect 
group (generated by commutators), and the converse follows from Poincare duality. 

In the special case in which G = Gp is the weighted star 

n3 n2 

n4@ if ' *l1 

nk 

direct computation shows that 

k k 

D = det[MG] = IIni - ZY nj. 
i=o i=1 j$i 

This is equivalent to 

k I D 

i ni kl,= ni 

which exhibits the connection between this topic and our equations (1) and (2). 
Explicitly (allowing no = 1), the group generated by xo,...,xn with relations 
xo = xi = X. for all i is perfect if and only if the integer N = i= ni is 
pseudoperfect with factors ni satisfying equation (1). We find it interesting that al- 
though the terms "perfect number" and "perfect group" were coined independently, 
the results of this paper reveal a relation between these apparently disparate topics. 

F'rom the point of view of number theory, perhaps the most interesting graphs 
are the so-called "weighted flowers", which are weighted graphs of the form 

Jkm= Jk,m(nl ** * Ink; WO, ...* Wm) 

n2 ni 

wo Wi Wm 
n3 0 , , , 

.. 

nk 

Lemma 3.2. For the weighted graph G = Jk,m(nl ... ,nk; Wo, ... IWm) pictured 
above, we have 

k I D P 

(7) = 



PSEUDOPERFECT NUMBERS 413 

where P has the continued fraction expansion Q 

[WO Wi ...)Wm] =WO - 1 

Wm 

and where D = det [MG]. 

A simple proof follows by induction on m (cf. [4, Lemma 4.3]). 
In view of Lemma 3.2, we can use computational techniques similar to those 

employed in finding solutions of equation (1) to find perfect weights for graphs of 
this type. A perfectible graph is called minimal if it contains no proper perfectible 
subgraphs. Table 2 presents the complete list of minimal perfectible flowers Jk,m 

with m > 2. Since a graph containing a perfectible subgraph is itself perfectible, 
we have the following result. 

Theorem 3. Let G = Jk,m be a flower with m > 2. Then G is perfectible if and 
only if G contains one of the five graphs in Table 2. 

Verifying that each of these weighted graphs is perfectly weighted is a direct 
application of Lemma 3.2. The proof of Theorem 3 consists of verifying that each 
graph is minimal and that the list is complete. This was accomplished by exhaustive 
searches, as discussed in Section 4. 

The graphs in Table 2 are pictured with one set of perfect weights. The perfect 
weights may not be unique. For instance, 

2 2 2 2 2 3 

7 j \24323 
179 

is another set of perfect weights onJ6,5- 

The graphs J3,28, J4,6, and J6,5 were discusssed in [4]. J10,3 was also introduced 
in [4], but at that time it was not known whether it was minimal or not. J7,4 was 
derived only in 1995 after an earlier discovery by K. Conway (unpublished) of a set 
of perfect weights for J8,4 shown below. 
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TABLE 2. Minimal perfectible flowers 

2 

3 b2 2 2 

28 

5 

2 

3 3 

2 2 2 2 2 3 

5 
7 

O 2 2 2 386 4464 3 

13 31 

3 
4 t 

5 2 

74 >2/ 2 __2__ 6 272 

13 1823 
17 

7 3 

11 K 2 2 2 8385241122405949876443646733953 

17 

157 1 \ 
8687184244716671 

961 4398619 
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4. SEARCH TECHNIQUES 

The computational results reported thus far stem from finding solutions to the 
equation 

(8) 1 P (8) i=l ~~~~ni Q ijk= ni Q 

Our main computational tool is Lemma 4.1, which gives a criterion for extending a 
solution of equation (7) to a solution of equation (8) by the adjunction of two more 
terms. Lemmas 4.1 and 4.2 generalize results of [5, Proposition 12 and Lemma 17]. 

Lemma 4.1. Given a positive integer P and relatively prime positive integers 
ni,... ,nk,Q, write 

k 1 D P 

= ni Q rlik= ni Q' 

where D = (Q _Zk=1 )Q =l ni . Let F be a factor of Y = Q2 Hlk n>2+D and 

write Y = FG. Suppose that F (and hence also G) is congruent to _Q Ilk= ni 
mod D and put 

nk+1 = Qi,.=1 i and nk+2 - - i=D 

Then the integers nl, .. , nk+2 satisfy the equation 

k+21 1 p 

Qni k+2ni Q 

Proof. 

k 1 1 1 1 
+ + + k 

= ni nk+1 nk+2 QIl=, ni(nk+l)(nk+2) 

P D D D 
Qrk + k+ k Q QFfl ni Q Hi=> ni + F Q flt1 ni + G 

D2 
+ 

Q k lk rk 
Q i=l ni (Q i=l ni + F) (Q HJ=l ni + G) 

p D(Y - FG) _ P 

Q Q rik ni (Q rl ni + F)(Q Hlkr ni + G) Q 

In addition, given a partial solution ni, 2, . , ni, we know the bounds on a 
search for ni+i. 

Lemma 4.2. Let ni < n2 < ... < nk, k > 2, satisfy eq.uation (8). Then for each 
index i < k-2, we have 

( - \_ ) n <(k -i) - -1 



416 WILLIAM BUTSKE, LYNDA M. JAJE, AND DANIEL R. MAYERNIK 

Proof. 

1 _P 1 1 P 1 

nj+j Q j nj Q=nj Q =1 nj 

so n-i > - > _)-i as required. 
On the other hand, since ni < n2 < < nk, we have 

(k-i) ? > 1 + 1 + - 
- ) + E 

nj+j nj+j ni+2 nj+j ni+2 j=i+3 

E +ni+2 -nj+j 

j=i+l nJ ni+lni+2 

k p il 

j=i+l Q Hfj=l nj Q j-1 

and thus nj+j < (k - i)(_ 1 )-1 as claimed. D 

To implement these ideas in a search program for fixed P and k, we use Lemma 
4.2 to determine all possibilities for n1, ... , nk-2, then we determine nk-1 and nk by 
the technique of Lemma 4.1. The advantage of this method over simply searching 
for all possiblities for nk-1 (as many as 1013 choices for k = 8 and P = 1) is that 
we can reduce computation time by making use of advanced factoring techniques. 
In contrast, a complete tree search for nk-1, using the bounds of Lemma 4.2, is 
equivalent to factoring the large integer Y of Lemma 4.1 by trial division up to 
the square root. Computation time could be further reduced by incorporating 
the required congruence relations F, C -Q_ H=1rkni mod D into the factoring 
methods and by taking advantage of the special form Y = (Q H ni)2 + D for a 
known small number D. This program has proven to be the most useful tool for 
finding solutions to equation (8) and its special cases, equations (1) and (2). It 
yields both nonsporadic solutions (solutions of length k resulting from extending 
known solutions of length k - 1 or k - 2) and sporadic soluttions (solutions not 
generated from such solutions of smaller length). 

These searches have produced the following results. With respect to equation 
(1), 68 nonsporadic and 44 sporadic solutions have been discovered for k = 8. The 
68 nonsporadic solutions are easy to find and were discussed in [3]. The 44 sporadic 
solutions include all except those in the string 2,3,7,43. The search is also complete 
with respect to solutions in prime integers ni, giving a proof of the completeness of 
the list of primary pseudoperfect numbers in Table 1. 

Similar computational searches give results about particular perfectible graphs. 
J8,5, for instance, admits at least 21 sets of perfect weights. Sixteen of these sets 
result from extending perfect weights on the minimal perfectible graph J6,5, four 
of them result from extending J7,4, and one from extending J8,4. These are the 
nonsporadic solutions, and there are possibly sporadic solutions for perfect weights 
on J8,5 which have not yet been explored. 

A special case of Lemma 3.2 reveals further interesting properties of the graphs 
Jk,m and a tighter relation between the topics of perfectible graphs and pseudo- 
perfect numbers. 
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Proposition 4.1. The weighted graph 

nj m 

2 2 2 2 w 
\2 0 

m 
nk-1 

is perfectly weighted if and only if nl,. .n,k satisfy equation (1), where nk 

m2(w-_) +m. 

Proof. Direct computation verifies that the continued fraction 

(M?+1)w-m 1 1 
[2,2, ... .,2,w] = ( 1 = I + -- - 

for nk as above. Thus, by Lemma 3.2 we have 

k-1 1 D 1 1 
_nir m (mw - -( ))m l1k ni m nk 

or 
E-+ H =D 

- + ~ -1 

where D is the determinant of the weighted graph. Hence D = 1 if and only if 
nl,..., nk satisfy equation (1). C 

To apply this result we need only find solutions ni1,... , nk to equation (1) in 
which one of the ni's happens to be congruent to m mod m2 for some m (but 
ni -- m to ensure that w = 1 + (ni - m)/m2 is greater than 1). For k < 8 we found 
24 distinct solution sets n1, .. ., nk which contain an ni with this special property 
for some integer m. Three of these sets have two different ni's with this property, 
and two have an ni which satisfies this congruence for two different m's. This gives 
a total of 29 examples of perfectly weighted graphs of the type Jk,m with k < 8 
and with weights as pictured in Proposition 4.1. They are presented in Table 3. 

For m < 5 there are no solutions of this type for k < 10. The most challenging 
case in this range was k = 9 and m = 3. In this instance we found that there are 
only 5 solutions to equation (1) with no ni = 3: 

2, 5, 7, 9, 31, 73,13327,63582361,110273083859; 

2,5,7,9,37,61,383,3226871,2344136699; 
2,5,7,11,17,149,1431,64911433,1169526576259; 

2,5, 7,11,17,157, 961,4398619,8687184244716671; 

2,5,7,11,17,167,1257,1919,9373. 

This leads immediately to the result that J9,3 is not perfectible. First, it is easy to 
reduce the general case of perfect weights for J9,3 to those pictured in Proposition 
4.1. Then we check that none of the ni's appearing in the five solutions above is 
congruent to 3 mod 9. In a similar manner, other graphs of type Jk,m can be shown 
not to be perfectible, resulting in a proof of Theorem 3. 
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TABLE 3. Special perfect weights on Jk,m k < 8 

nl, n2 ,ink-1 M w 
2,3,7,179,24323 5 3 
2,3,7,55,179,24323 67 2240437 
2,3,7,179,24323,10057317271 5 3 
2,3,11,23,31,211031 71 13 
2,3,11,23,31,12017087 7 965 
2,3,7,43,1807,3263443,134811739261383753719 5 426002311687 
2,3,7,43,1807,3263479,243811701792623 5 11527311163 
2,3,7,43,1823,193667,637617223459 5 1250940688133154818523 
2,3,7,43,1823,193667,637617223459 31 32542681793266254385 
2,3,7,43,1831,132347,231679879 17 4142701692187 
2,3,7,47,395,277442411,1701723083 361 7 
2,3,7,47,403,19403,15435516179 5 3387914913502507 
2,3,7.55,179,24323,101149630679497570171 67 2240437 
2,3,7,55,179,24323,513449911932648503 37 7346471 
2,3,7,179,24323,10057317271,101149630679497570171 5 3 
2,3,7,179,24323,10057317287,5949978284730273323 5 3 
2,3,7,179,24323,10057317311,2467064172726591731 5 3 
2,3,7,179,24323,10057317467,513449911932648503 5 3 
2,3,7,179,24323,10057317967,145121431390804003 5 3 
2,3,7,179,24323,10057320619,30202945461748519 5 3 
2,3,7,179,24323,10057325347,12523178395739983 5 3 
2,3,7,179,24323,10057454579,736667018400959 5 3 
2,3,11,17,79,1049,3696653 7 7 
2,3,11,23,31,47059,3375982667 5 257468755 
2,3,11,23,31,47059,165128325167 5 89784175 
2,3,11,23,31,47059,165128325167 7 45808253 
2,3,11,23,31,47147,11061526082145911 17 86259 
2,3,11,23,31,211031,601432790177275 71 13 
2,3,11,23,31,12017087,26715920281613179 7 965 

Although J9,3 is not perfectible, each of the five solutions to equation (1) with 
no ni = 3 results in a perfectible flower of type J9,6. They are presented in Table 
4. 

Solutions to equation (5), or more generally to 

(9) E H 

also lead to perfect weights for graphs of type Jk,m. Namely, if nl, ... , nk satisfy 
equation (9), then the graph 

n2 n1 

l3* 2 2 2 2 2 

* ~~m 
nk 

is perfectly weighted for m H k= ni- 2. Again, Lemma 3.2 provides the proof. 
All solutions to equation (9) are known for k < 7 (there are 50 of them), and more 
than 400 are known for k = 8 ([6], [1]). 
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TABLE 4. Examples of perfect weights onJ9,6 

5 3 
7 ~~~2 

31 2 2 2 2 3 2 
31- , e0 9 0 0 a 

1644669553860852143651849660 

73 110273083859 
13327 63582361 

5 3 

>7*LX 2 2 2 3 2 
37- 

50856960621692703265660 

61 2344136699 
383 3226871 

5 3 
7 2 

1 2? 2 2 160 3 2 

103470744310371595093642 

17 1169526576259 
149 64911433 

5 3 
72 

11 S 2 2 2 2 6 2 
965242693857409 

17 g S 4398619 
157 961 

5 3 
7 2 

11 2" 2 2 141 2 2 31614284124 
110 z *9 * 0- * 0 

17 9473 
167 1919 
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